1. Researcher uses music to manage networks
  2. The evolution of doors and windows
  3. Day trips from Newcastle
  4. Warwickshire the heart of English history
  5. Periodic table still influencing today’s research
  6. Engineers translate brain signals directly into speech
  7. Manchester’s cultural must-sees the top sights in a changing city
  8. Scratching beneath the surface of veneers
  9. Smart home tests first elder care robot
  10. Charting a path to cheaper flexible solar cells
  11. The Photographer and Architecture
  12. Multicolor holography technology could enable extremely compact 3D displays
  13. Highlights of hidden England – Lincoln and beyond
  14. Using drones to tackle climate change
  15. At the Flip of a Switch
  16. Variations in seafloor create freak ocean waves
  17. Scientists develop first fabric to automatically cool or insulate depending on conditions
  18. Going underground exploring the best sights below London
  19. Concrete Utopia
  20. New fuel cell concept brings biological design to better electricity generation
  21. Quantum transfer at the push of a button
  22. Physicists create exotic electron liquid
  23. Two days in Oxford
  24. Royal Academy expansion reveals hidden life of art schools
  25. Millions of tons of plastic waste could be turned into clean fuels, other products
  26. Speed of light toward a future quantum internet
  27. A perfect day in London
  28. Like something from Pompeii’ – Battersea Arts Centre’s scorching resurrection
  29. Converting Wi-Fi signals to electricity with new 2D materials
  30. After making history, NASA’s tiny deep-space satellites go silent
  31. Night sky Britain aurora-spotting and stargazing in England, Scotland and Wales
  32. London through the ages architectural insights into the capital’s history
  33. Fasting ramps up human metabolism, study shows
  34. Scientists find increase in asteroid impacts on ancient Earth by studying the Moon
  35. Artificial intelligence can identify microscopic marine organisms
  36. Living by the tides on Northumberland’s Holy Island
  37. HP is making a new VR headset with a super high resolution
  38. HOW A NEW SATELLITE CONSTELLATION COULD ALLOW US TO TRACK PLANES ALL OVER THE GLOBE
  39. An architectural tour of Liverpool’s fascinating history
  40. Patisandhika and Daniel Mitchell complete A Brutalist Tropical Home in Bali
  41. These genetic ‘goggles’ could help us engineer wildly resilient crops
  42. Best things to do in Yorkshire in spring
Physicists create exotic electron liquid

The achievement opens a pathway for development of the first practical and efficient devices to generate and detect light at terahertz wavelengths — between infrared light and microwaves. Such devices could be used in applications as diverse as communications in outer space, cancer detection, and scanning for concealed weapons.

The research could also enable exploration of the basic physics of matter at infinitesimally small scales and help usher in an era of quantum metamaterials, whose structures are engineered at atomic dimensions.

The UCR physicists published their findings online Feb. 4 in the journal Nature Photonics. They were led by Associate Professor of Physics Nathaniel Gabor, who directs the UCR Quantum Materials Optoelectronics Lab. Other co-authors were lab members Trevor Arp and Dennis Pleskot, and Associate Professor of Physics and Astronomy Vivek Aji.

In their experiments, the scientists constructed an ultrathin sandwich of the semiconductor molybdenum ditelluride between layers of carbon graphene. The layered structure was just slightly thicker than the width of a single DNA molecule. They then bombarded the material with superfast laser pulses, measured in quadrillionths of a second.

“Normally, with such semiconductors as silicon, laser excitation creates electrons and their positively charged holes that diffuse and drift around in the material, which is how you define a gas,” Gabor said. However, in their experiments, the researchers detected evidence of condensation into the equivalent of a liquid. Such a liquid would have properties resembling common liquids such as water, except that it would consist, not of molecules, but of electrons and holes within the semiconductor.

“We were turning up the amount of energy being dumped into the system, and we saw nothing, nothing, nothing — then suddenly we saw the formation of what we called an ‘anomalous photocurrent ring’ in the material,” Gabor said. “We realized it was a liquid because it grew like a droplet, rather than behaving like a gas.”

“What really surprised us, though, was that it happened at room temperature,” he said. “Previously, researchers who had created such electron-hole liquids had only been able to do so at temperatures colder than even in deep space.”

The electronic properties of such droplets would enable development of optoelectronic devices that operate with unprecedented efficiency in the terahertz region of the spectrum, Gabor said. Terahertz wavelengths are longer than infrared waves but shorter than microwaves, and there has existed a “terahertz gap” in the technology for utilizing such waves. Terahertz waves could be used to detect skin cancers and dental cavities because of their limited penetration and ability to resolve density differences. Similarly, the waves could be used to detect defects in products such as drug tablets and to discover weapons concealed beneath clothing.

Terahertz transmitters and receivers could also be used for faster communication systems in outer space. And, the electron-hole liquid could be the basis for quantum computers, which offer the potential to be far smaller than silicon-based circuitry now in use, Gabor said.

More generally, Gabor said, the technology used in his laboratory could be the basis for engineering “quantum metamaterials,” with atom-scale dimensions that enable precise manipulation of electrons to cause them to behave in new ways.

In further studies of the electron-hole “nanopuddles,” the scientists will explore their liquid properties such as surface tension.

“Right now, we don’t have any idea how liquidy this liquid is, and it would be important to find out,” Gabor said.

Gabor also plans to use the technology to explore basic physical phenomena. For example, cooling the electron-hole liquid to ultra-low temperatures could cause it to transform into a “quantum fluid” with exotic physical properties that could reveal new fundamental principles of matter.

In their experiments, the researchers used two key technologies. To construct the ultrathin sandwiches of molybdenum ditelluride and carbon graphene, they used a technique called “elastic stamping.” In this method, a sticky polymer film is used to pick up and stack atom-thick layers of graphene and semiconductor.

And to both pump energy into the semiconductor sandwich and image the effects, they used “multi-parameter dynamic photoresponse microscopy” developed by Gabor and Arp. In this technique, beams of ultrafast laser pulses are manipulated to scan a sample to optically map the current generated.

Cart

Werk Press

VPS-HOST digital universe is the first stop for savvy readers. Our website is the companion tool for smart internet readers. For cities around the globe, travellers can find things to do, places to eat, where to shop, entertainment options and event happenings. Timely stories and blog content, plus a resource of 50,000+ things to do for people, coupled with our funny blogs, makes us a a useful resource to today’s audience.